

Experimental study of potential bearing uplift of cable-stayed bridges under earthquakes

Wei Guo

T.Y. Lin International Engineering Consulting (China) Co., Ltd., Chongqing, China.

Yu Shen, Jianzhong Li

State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Contact: yushen@tongji.edu.cn

Abstract

To investigate the potential bearing uplift of long-span cable-stayed bridges, a 1/35 scaled doubletower bridge model was tested on four shake tables at Tongji University, China. A longitudinal floating system was first applied to the test model, *i.e.*, the unlimited longitudinal but restrained transverse movements. Then, viscous fluid dampers (VFDs) were installed as the tower-deck connections to study their effects on alleviating the issue of bearing uplift at auxiliary piers. Test results showed that: (1) though ground motions were merely longitudinally input, there was a possibility of bearing uplift due to the longitudinal vibration of the towers combined with the vertical vibration of the deck; (2) the effectiveness of the VFDs on reducing the bearing force at the auxiliary pier was related to the characteristics of earthquakes; (3) compared with the deck longitudinal displacement, the effectiveness of VFDs on controlling its vertical displacement was insignificant.

Keywords: long-span cable-stayed bridge; earthquake; shake table tests; bearing uplifting; viscous fluid damper.

1 Introduction

Cable-stayed bridges become the preferred bridge scheme for the newly built bridges with a span length from 400 m to 1200 m own to the aesthetical appearance, high structural efficiency, and good economy. In practice, floating or semifloating systems are often adopted in the longitudinal direction for a long-span cable-stayed bridge due to the consideration of thermal movement. These systems also have the inherent seismic isolation characteristic which elongates the natural periods. Therefore, this kind of long-span cable-stayed bridge is characterized by large flexibility and low structural damping [1][2], resulting in large longitudinal seismic deck displacement. Various dampers, such as the viscous fluid damper (VFD), have been proposed to reduce seismic displacement. Martínez-Rodrigo and Filiatrault [3] analyzed and compared the effects of several kinds of seismic devices (i.e., metallic dampers, VFDs, tuned mass dampers, and friction pendulum bearings) on the seismic responses of a single-tower cable-stayed bridge with a span of 137.4 m, and the results revealed that the VFDs could balance the seismic displacement and force responses well of the cable-stayed bridge. Jia et al. [4] further investigated the effect of VFDs on a long-span cable-stayed double-tower bridge with a span of 680 m. The results showed that the VFDs can significantly reduce the longitudinal and vertical seismic deck displacement by around 50% and 30%, respectively.